Spike-Associated Fast Contraction of Dendritic Spines in Cultured Hippocampal Neurons
نویسندگان
چکیده
Dendritic spines have long been known to contain contractile elements and have recently been shown to express apparent spontaneous motility. Using high-resolution imaging of dendritic spines of green-fluorescent protein (GFP)-expressing, patch-clamped hippocampal neurons in dissociated culture, we find that bursts of action potentials, evoked by depolarizing current pulses, cause momentary contractions of dendritic spines. Blocking calcium currents with cobalt prevented these twitches. In additional experiments with neurons loaded via a micropipette with calcium-sensitive and insensitive dyes, spontaneous calcium transients were associated with a rapid contraction of the spine head. The spine twitch was prolonged by tetraethylammonium or bicuculline, which enhance calcium transients, and was blocked by the actin polymerization antagonist latrunculin-B. The spine twitch may be instrumental in modulating reactivity of the NMDA receptor to afferent stimulation, following back-propagating action potentials.
منابع مشابه
Release of calcium from stores alters the morphology of dendritic spines in cultured hippocampal neurons.
The ability to monitor ongoing changes in the shape of dendritic spines has important implications for the understanding of the functional correlates of the great variety of shapes and sizes of dendritic spines in central neurons. We have monitored and three-dimensionally reconstructed dendritic spines in cultured hippocampal neurons over several hours of observation in a confocal laser scannin...
متن کاملBidirectional regulation of dendritic spine dimensions by glutamate receptors.
The recent conflicting observations on the effects of excitatory afferent activity on dimensions of dendritic spines of central neurons led us to examine the possibility that the same spine can either increase or decrease its length in response to different stimuli. Cultured hippocampal neurons labeled with calcein, were 3D reconstructed in a confocal laser scanning microscope. Their responses ...
متن کاملEffect of Trigonelline on Dendritic Morphology in the Hippocampus and Prefrontal Cortex in Streptozotocin-Induced Diabetic Rats
Introduction: Diabetes mellitus causes adverse changes in the neurological morphology of the hippocampus and prefrontal cortex of the brain by increasing oxidative stress. Trigonelline has antihyperglycemic effects and can inhibit oxidative stress. The aim of this study was to evaluate the protective effect of trigonelline on dendritic changes in hippocampal and prefrontal cortex neurons in dia...
متن کاملSynaptopodin regulates plasticity of dendritic spines in hippocampal neurons.
The spine apparatus is an essential component of dendritic spines of cortical and hippocampal neurons, yet its functions are still enigmatic. Synaptopodin (SP), an actin-binding protein, is tightly associated with the spine apparatus and it may play a role in synaptic plasticity, but it has not yet been linked mechanistically to synaptic functions. We studied endogenous and transfected SP in de...
متن کاملMorphological Changes in Hippocampal Ca1 Area in Diabetic Rats: A Golgi-impregnation Study
Background and Objective: Although diabetes mellitus is known to be one of the risk factors for dementia but neuropathic changes in the brain of diabetic patients have not been completely revealed. Therefore, this research study was done to evaluate structural changes in pyramidal neurons of hippocampal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 30 شماره
صفحات -
تاریخ انتشار 2001